Monday, December 3, 2018

DIGITAL SPECIAL.... The trillion-dollar opportunity for the industrial sector: How to extract full value from technology PART II


The trillion-dollar opportunity for the industrial sector: How to extract full value from technology PART II
Running the corporation
The many industrial companies that have pursued growth via acquisition end up running their business on multiple enterprise resource-planning (ERP) and legacy systems. Not surprisingly, across the advanced industrial sector, the median spend on general and administrative expenses accounts for 4 to 8 percent of revenue. Automating manual processes via robotic process automation (RPA) can significantly reduce these costs. Other measures to cut costs and improve cash flow include building data lakes to centralize data sets across ERPs, automating financial reporting and invoice generation, and using advanced analytics to improve cash management.
Pulling it all together
To maximize value creation in a tech-enabled transformation, smart companies start by establishing a sound set of use cases across all five of these business elements. That’s a critical step in setting aspirations, capturing value, and tracking value capture over time. Whether a company focuses on two or three of the business elements or looks to create value from all five through tech enablement, like the example in Exhibit 4, will depend on the nature of its business and its position in the value chain. But to avoid leaving value on the table, leaders would be well-advised to examine all the elements in detail before deciding on the best approach.
Exhibit 4 SEE IN ORIGINAL ARTICLE
What successful tech enablement could look like for an OEM.
The other imperative in starting out on a transformation journey is to check that your organization has all the supporting elements it needs, as described below.
Ensuring the right enablers are in place
In considering the capabilities, structures, and practices that industrial companies need for a successful transformation, we find it helpful to define three sets of prerequisites that executives can use as a checklist in prioritizing initiatives and allocating resources.
Foundation: Data strategy, cybersecurity, cloud infrastructure, and analytics
A comprehensive data strategy involves identifying the data sets you need to drive insights across your priority use cases, understanding the sources of those data sets, and forming partnerships to access those that you need but don’t own. For instance, a manufacturer seeking to reduce downtime for its mining equipment will need to combine its own data with a host of maintenance and usage data from the mining operators that use the equipment. Establishing which data sets you need and then building productive partnerships with OEMs and component manufacturers to access them will be critical in maximizing value capture.
As companies connect enormous numbers of devices and develop ever-more-complex data structures, cybersecurity becomes increasingly important. Once, cyberrisk was mainly confined to IT functions, but as businesses hook up their production systems to the Internet, operating technology comes under threat as well.3 Seventy-five percent of the experts who took part in a recent McKinsey survey said that IoT security was important or very important, yet only 16 percent felt their organization was well-prepared. Building resilience will involve prioritizing assets and risks, improving controls and processes, and establishing effective governance.
Establishing the right cloud infrastructure involves creating flexible environments and sound application programming interfaces. Companies also need to think through which data should be in the cloud and which on the “edge”—on the devices themselves. Such decisions will largely depend on how much real-time processing is required. For instance, autonomous driving lends itself to an edge architecture, whereas analyzing consumption trends by aggregating data from connected appliances can be handled in the cloud.
Equipping your organization with data analytics capabilities to drive insights will be critical in capturing value. Whether you build the capabilities in house or outsource them will depend on your circumstances and needs. Often it makes sense to do both in the early stages, building capabilities over the long term while using outsourcing to accelerate short-term impact. Regardless of which route you take, data analytics and insight generation must be linked to actions that you can take to generate impact. For instance, if you are introducing analytics-driven dynamic deal scoring to improve margins, your reps will need a quoting tool that shows them the recommended prices, and leaders will need a performance-management system that tracks improvements across the whole sales team over time.
Organization: Agile operating model and culture
The ability to respond quickly to changes in the business environment relies on an agile operating model with small, flexible teams and clear processes that allow timely decision making on issues relating to governance, funding mechanisms, resource allocation, and so on. Old-style yearlong development cycles must give way to rapid iterations in which teams repeatedly test and refine concepts and products with customers.
Such an approach requires corresponding changes in an organization’s culture. Successful companies take great care to foster a mind-set that embraces change, is comfortable taking risks, and views failure as a springboard for learning.
Accelerators: Design thinking and ecosystem
Using customer insights to rapidly innovate on products, services, and offers calls for new capabilities and tight linkages between a company’s sales channel and its product organization. Design thinking uses closed-loop processes to generate customer insights, translate them into product features and services, rapidly deploy these elements with the customer, test the impact, and repeat as necessary until the desired impact is achieved.
Building an ecosystem is the final enabler and involves establishing a set of technology and go-to-market partnerships. The complexity of a tech-enabled transformation requires partners to share data, insights, and the value created in a mutually satisfactory and sustainable manner.
Getting started
·         Though tech-enabled transformations in the industrial sector are still in the early stages, companies have no time to lose. An early mover with the right strategy could not only grow profitably across the board, but also leapfrog over competitors and capture disproportionate value by gaining market share from peers or being the first to respond to radical shifts in customer behavior.
·         Every company’s approach to transformation will reflect its individual starting point and business priorities, but any leader would do well to follow a few basic steps:
o    Analyze every aspect of the business. When embarking on a tech-enabled transformation, the best way to start is by taking a step back and considering exactly what you want to achieve. Obvious though that might sound, it’s not so easy to act on. Some companies are so overwhelmed by, say, the promise of the Internet of Things that they jump straight into working out how to introduce IoT applications into their products and operations. Instead, evaluate your whole business to see where technology could unlock the greatest value. If you are an industrial distributor, for instance, you may be able to improve your margins much faster by adopting analytics-based pricing or digitizing your selling process than by creating IoT-enabled services. Implementing and scaling basic technologies is a quick way to learn and capture value before venturing into more sophisticated territory such as remote diagnostics and maintenance.
o    Reimagine your business model and aspirations. Don’t use technology to make your current model marginally more efficient. Set a bold aspiration to ensure the changes you make don’t just reinforce the status quo. Define metrics and operational performance indicators to track improvement, and ensure you have leadership support. Treat your program as a transformation, not an incremental initiative.
o    Understand how new technologies affect working processes. To succeed, new technologies need to operate in conjunction with legacy systems and existing workflows. Consider an OEM adopting IoT-enabled solutions to offer predictive maintenance. When a client’s system detects an equipment problem, it automatically notifies the OEM to send a service rep to carry out unscheduled repairs. But for this to work, the OEM has to integrate these notifications into its service-dispatch processes so that reps are sent out promptly. Closing the loop on workflows in this way is a critical step in capturing value.
o    Understand where you are and build your transformation roadmap. Too often, companies deploy solutions without first taking care to understand their current situation. Set a baseline and be realistic about your starting point and digital maturity—which will partly determine how much value you can expect to capture. Then, work out where the value lies, assess your capabilities, and build a roadmap that prioritizes and sequences the key elements in your transformation. Develop a clear view of the value-chain elements your business touches, your competitive environment, and the ways technology could disrupt it: for instance, through customer-service apps. Think in terms of three-to-five-year horizons to ensure you keep pace with the evolving technology and business landscapes.

Though the industrial sector has been slower to digitize than many other sectors, advanced technologies now allow companies to reshape all their activities from product development to sales and servicing. Our experience indicates that taking a bold, strategy-led approach and identifying opportunities systematically across the entire business is the best route to a successful outcome.
By Venkat Atluri, Saloni Sahni, and Satya Rao
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-trillion-dollar-opportunity-for-the-industrial-sector

No comments: