Wednesday, December 12, 2018

AI SPECIAL Applying artificial intelligence for social good PART II


Applying artificial intelligence for social good PART II


2.         AI capabilities that can be used for social good
We identified 18 AI capabilities that could be used to benefit society. Fourteen of them fall into three major categories: computer vision, natural-language processing, and speech and audio processing. The remaining four, which we treated as stand-alone capabilities, include three AI capabilities: reinforcement learning, content generation, and structured deep learning. We also included a category for analytics techniques.
When we subsequently mapped these capabilities to domains (aggregating use cases) in a heat map, we found some clear patterns (Exhibit 4).
Exhibit 4 SEE ORIGINAL ARTICLE
Image classification and object detection are powerful computer-vision capabilities
Within computer vision, the specific capabilities of image classification and object detection stand out for their potential applications for social good. These capabilities are often used together—for example, when drones need computer vision to navigate a complex forest environment for search-and-rescue purposes. In this case, image classification may be used to distinguish normal ground cover from footpaths, thereby guiding the drone’s directional navigation, while object detection helps circumvent obstacles such as trees.
Some of these use cases consist of tasks a human being could potentially accomplish on an individual level, but the required number of instances is so large that it exceeds human capacity (for example, finding flooded or unusable roads across a large area after a hurricane). In other cases, an AI system can be more accurate than humans, often by processing more information (for example, the early identification of plant diseases to prevent infection of the entire crop).
Computer-vision capabilities such as the identification of people, face detection, and emotion recognition are relevant only in select domains and use cases, including crisis response, security, equality, and education, but where they are relevant, their impact is great. In these use cases, the common theme is the need to identify individuals, most easily accomplished through the analysis of images. An example of such a use case would be taking advantage of face detection on surveillance footage to detect the presence of intruders in a specific area. (Face detection applications detect the presence of people in an image or video frame and should not be confused with facial recognition, which is used to identify individuals by their features.)
Natural-language processing
Some aspects of natural-language processing, including sentiment analysis, language translation, and language understanding, also stand out as applicable to a wide range of domains and use cases. Natural-language processing is most useful in domains where information is commonly stored in unstructured textual form, such as incident reports, health records, newspaper articles, and SMS messages.
As with methods based on computer vision, in some cases a human can probably perform a task with greater accuracy than a trained machine-learning model can. Nonetheless, the speed of “good enough” automated systems can enable meaningful scale efficiencies—for example, providing automated answers to questions that citizens may ask through email. In other cases, especially those that require processing and analyzing vast amounts of information quickly, AI models could outperform humans. An illustrative example could include monitoring the outbreak of disease by analyzing tweets sent in multiple local languages.
Some capabilities, or combination of capabilities, can give the target population opportunities that would not otherwise exist, especially for use cases that involve understanding the natural environment through the interpretation of vision, sound, and speech. An example is the use of AI to help educate children who are on the autism spectrum. Although professional therapists have proved effective in creating behavioral-learning plans for children with autism spectrum disorder (ASD), waitlists for therapy are long. AI tools, primarily using emotion recognition and face detection, can increase access to such educational opportunities by providing cues to help children identify and ultimately learn facial expressions among their family members and friends.
Structured deep learning also may have social-benefit applications
A third category of AI capabilities with social-good applications is structured deep learning to analyze traditional tabular data sets. It can help solve problems ranging from tax fraud (using tax-return data) to finding otherwise hard to discover patterns of insights in electronic health records.
Structured deep learning (SDL) has been gaining momentum in the commercial sector in recent years. We expect to see that trend spill over into solutions for social-good use cases, particularly given the abundance of tabular data in the public and social sectors. By automating aspects of basic feature engineering, SDL solutions reduce the need either for domain expertise or an innate understanding of the data and which aspects of the data are important.
Advanced analytics can be a more time- and cost-effective solution than AI for some use cases
Some of the use cases in our library are better suited to traditional analytics techniques, which are easier to create, than to AI. Moreover, for certain tasks, other analytical techniques can be more suitable than deep learning. For example, in cases where there is a premium on explainability, decision tree-based models can often be more easily understood by humans. In Flint, Michigan, machine learning (sometimes referred to as AI, although for this research we defined AI more narrowly as deep learning) is being used to predict houses that may still have lead water pipes (Exhibit 5).
Exhibit 5 SEE ORIGINAL ARTICLE

3.         Overcoming bottlenecks, especially for data and talent
While the social impact of AI is potentially very large, certain bottlenecks must be overcome if even some of that potential is to be realized. In all, we identified 18 potential bottlenecks through interviews with social-domain experts and with AI researchers and practitioners. We grouped these bottlenecks in four categories of importance.
The most significant bottlenecks are data accessibility, a shortage of talent to develop AI solutions, and “last-mile” implementation challenges (Exhibit 6).
Exhibit 6 SEE ORIGINAL ARTICLE
Data needed for social-impact uses may not be easily accessible
Data accessibility remains a significant challenge. Resolving it will require a willingness, by both private- and public-sector organizations, to make data available. Much of the data essential or useful for social-good applications are in private hands or in public institutions that might not be willing to share their data. These data owners include telecommunications and satellite companies; social-media platforms; financial institutions (for details such as credit histories); hospitals, doctors, and other health providers (medical information); and governments (including tax information for private individuals). Social entrepreneurs and nongovernmental organizations (NGOs) may have difficulty accessing these data sets because of regulations on data use, privacy concerns, and bureaucratic inertia. The data may also have business value and could be commercially available for purchase. Given the challenges of distinguishing between social use and commercial use, the price may be too high for NGOs and others wanting to deploy the data for societal benefits.
The expert AI talent needed to develop and train AI models is in short supply
Just over half of the use cases in our library can leverage solutions created by people with less AI experience. The remaining use cases are more complex as a result of a combination of factors, which vary with the specific case. These need high-level AI expertise—people who may have PhDs or considerable experience with the technologies. Such people are in short supply.
For the first use cases requiring less AI expertise, the needed solution builders are data scientists or software developers with AI experience but not necessarily high-level expertise. Most of these use cases are less complex models that rely on single modes of data input.
The complexity of problems increases significantly when use cases require several AI capabilities to work together cohesively, as well as multiple different data-type inputs. Progress in developing solutions for these cases will thus require high-level talent, for which demand far outstrips supply and competition is fierce.
‘Last-mile’ implementation challenges are also a significant bottleneck for AI deployment for social good
Even when high-level AI expertise is not required, NGOs and other social-sector organizations can face technical problems, over time, deploying and sustaining AI models that require continued access to some level of AI-related skills. The talent required could range from engineers who can maintain or improve the models to data scientists who can extract meaningful output from them. Handoffs fail when providers of solutions implement them and then disappear without ensuring that a sustainable plan is in place.
Organizations may also have difficulty interpreting the results of an AI model. Even if a model achieves a desired level of accuracy on test data, new or unanticipated failure cases often appear in real-life scenarios. An understanding of how the solution works may require a data scientist or “translator.” Without one, the NGO or other implementing organization may trust the model’s results too much: most AI models cannot perform accurately all the time, and many are described as “brittle” (that is, they fail when their inputs stray in specific ways from the data sets on which they were trained).
 By Michael ChuiMartin HarryssonJames ManyikaRoger Roberts, Rita Chung, Pieter Nel, and Ashley van Heteren
https://www.mckinsey.com/featured-insights/artificial-intelligence/applying-artificial-intelligence-for-social-good?cid=other-eml-alt-mgi-mck-oth-1811&hlkid=485b551e30be4defadc2592045042ed6&hctky=1627601&hdpid=465daed6-1d79-427b-9ff3-417da5844a17
CONTINUES IN PART III

No comments: