Saturday, October 27, 2018

AI SPECIAL.... The promise and challenge of the age of artificial intelligence PART II


 The promise and challenge of the age of artificial intelligence PART II

3.         Economies also stand to benefit from AI, through increased productivity and innovation
 Deployment of AI and automation technologies can do much to lift the global economy and increase global prosperity. At a time of aging and falling birth rates, productivity growth becomes critical for long-term economic growth. Even in the near term, productivity growth has been sluggish in developed economies, dropping to an average of 0.5 percent in 2010–14 from 2.4 percent a decade earlier in the United States and major European economies. Much like previous general-purpose technologies, AI has the potential to contribute to productivity growth.
AI could contribute to economic impact through a variety of channels
The largest economic impacts of AI will likely be on productivity growth through labor market effects including substitution, augmentation, and contributions to labor productivity.
Our research suggests that labor substitution could account for less than half of the total benefit. AI will augment human capabilities, freeing up workers to engage in more productive and higher-value tasks, and increase demand for jobs associated with AI technologies.
AI can also boost innovation, enabling companies to improve their top line by reaching underserved markets more effectively with existing products, and over the longer term, creating entirely new products and services. AI will also create positive externalities, facilitating more efficient cross-border commerce and enabling expanded use of valuable cross-border data flows. Such increases in economic activity and incomes can be reinvested into the economy, contributing to further growth.
The deployment of AI will also bring some negative externalities that could lower, although not eliminate, the positive economic impacts. On the economic front, these include increased competition that shifts market share from nonadopters to front-runners, the costs associated with managing labor market transitions, and potential loss of consumption for citizens during periods of unemployment, as well the transition and implementation costs of deploying AI systems.
All in all, these various channels net out to significant positive economic growth, assuming businesses and governments proactively manage the transition. One simulation we conducted using McKinsey survey data suggests that AI adoption could raise global GDP by as much as $13 trillion by 2030, about 1.2 percent additional GDP growth per year. This effect will build up only through time, however, given that most of the implementation costs of AI may be ahead of the revenue potential.
The AI readiness of countries varies considerably
The leading enablers of potential AI-driven economic growth, such as investment and research activity, digital absorption, connectedness, and labor market structure and flexibility, vary by country. Our research suggests that the ability to innovate and acquire the necessary human capital skills will be among the most important enablers—and that AI competitiveness will likely be an important factor influencing future GDP growth.
Countries leading the race to supply AI have unique strengths that set them apart. Scale effects enable more significant investment, and network effects enable these economies to attract the talent needed to make the most of AI. For now, China and the United States are responsible for most AI-related research activities and investment.
A second group of countries that includes Germany, Japan, Canada, and the United Kingdom have a history of driving innovation on a major scale and may accelerate the commercialization of AI solutions. Smaller, globally connected economies such as Belgium, Singapore, South Korea, and Sweden also score highly on their ability to foster productive environments where novel business models thrive.
Countries in a third group, including but not limited to Brazil, India, Italy, and Malaysia, are in a relatively weaker starting position, but they exhibit comparative strengths in specific areas on which they may be able to build. India, for instance, produces around 1.7 million graduates a year with STEM degrees—more than the total of STEM graduates produced by all G-7 countries. Other countries, with relatively underdeveloped digital infrastructure, innovation and investment capacity, and digital skills, risk falling behind their peers.

4.         AI and automation will have a profound impact on work
Even as AI and automation bring benefits to business and the economy, major disruptions to work can be expected.
About half of current work activities (not jobs) are technically automatable
Our analysis of the impact of automation and AI on work shows that certain categories of activities are technically more easily automatable than others. They include physical activities in highly predictable and structured environments, as well as data collection and data processing, which together account for roughly half of the activities that people do across all sectors in most economies.
The least susceptible categories include managing others, providing expertise, and interfacing with stakeholders. The density of highly automatable activities varies across occupations, sectors, and, to a lesser extent, countries. Our research finds that about 30 percent of the activities in 60 percent of all occupations could be automated—but that in only about 5 percent of occupations are nearly all activities automatable. In other words, more occupations will be partially automated than wholly automated.
Three simultaneous effects on work: Jobs lost, jobs gained, jobs changed
The pace at and extent to which automation will be adopted and impact actual jobs will depend on several factors besides technical feasibility. Among these are the cost of deployment and adoption, and the labor market dynamics, including labor supply quantity, quality, and associated wages. The labor factor leads to wide differences across developed and developing economies. The business benefits beyond labor substitution—often involving use of AI for beyond-human capabilities—which contribute to business cases for adoption are another factor.
Social norms, social acceptance, and various regulatory factors will also determine the timing. How all these factors play out across sectors and countries will vary, and for countries will largely be driven by labor market dynamics. For example, in advanced economies with relatively high wage levels, such as France, Japan, and the United States, jobs affected by automation could be more than double that in India, as a percentage of the total.
Given the interplay of all these factors, it is difficult to make predictions but possible to develop various scenarios. First, on jobs lost: our midpoint adoption scenario for 2016 to 2030 suggests that about 15 percent of the global workforce (400 million workers) could be displaced by automation.
Second, jobs gained: we developed scenarios for labor demand to 2030 based on anticipated economic growth through productivity and by considering several drivers of demand for work. These included rising incomes, especially in emerging economies, as well as increased spending on healthcare for aging populations, investment in infrastructure and buildings, energy transition spending, and spending on technology development and deployment.
The number of jobs gained through these and other catalysts could range from 555 million to 890 million, or 21 to 33 percent of the global workforce. This suggests that the growth in demand for work, barring extreme scenarios, would more than offset the number of jobs lost to automation. However, it is important to note that in many emerging economies with young populations, there will already be a challenging need to provide jobs to workers entering the workforce and that, in developed economies, the approximate balance between jobs lost and those created in our scenarios is also a consequence of aging, and thus fewer people entering the workforce.
No less significant are the jobs that will change as machines increasingly complement human labor in the workplace. Jobs will change as a result of the partial automation described above, and jobs changed will affect many more occupations than jobs lost. Skills for workers complemented by machines, as well as work design, will need to adapt to keep up with rapidly evolving and increasingly capable machines.
Four workforce transitions will be significant
Even if there will be enough work for people in 2030, as most of our scenarios suggest, the transitions that will accompany automation and AI adoption will be significant.
First, millions of workers will likely need to change occupations. Some of these shifts will happen within companies and sectors, but many will occur across sectors and even geographies. While occupations requiring physical activities in highly structured environments and in data processing will decline, others that are difficult to automate will grow. These could include managers, teachers, nursing aides, and tech and other professionals, but also gardeners and plumbers, who work in unpredictable physical environments. These changes may not be smooth and could lead to temporary spikes in unemployment.
Second, workers will need different skills to thrive in the workplace of the future. Demand for social and emotional skills such as communication and empathy will grow almost as fast as demand for many advanced technological skills. Basic digital skills have been increasing in all jobs. Automation will also spur growth in the need for higher cognitive skills, particularly critical thinking, creativity, and complex information processing. Demand for physical and manual skills will decline, but these will remain the single largest category of workforce skills in 2030 in many countries. The pace of skill shifts has been accelerating, and it may lead to excess demand for some skills and excess supply for others.
Third, workplaces and workflows will change as more people work alongside machines. As self-checkout machines are introduced in stores, for example, cashiers will shift from scanning merchandise themselves to helping answer questions or troubleshoot the machines.
Finally, automation will likely put pressure on average wages in advanced economies. Many of the current middle-wage jobs in advanced economies are dominated by highly automatable activities, in fields such as manufacturing and accounting, which are likely to decline. High-wage jobs will grow significantly, especially for high-skill medical and tech or other professionals. However, a large portion of jobs expected to be created, such as teachers and nursing aides, typically have lower wage structures.
In tackling these transitions, many economies, especially in the OECD, start in a hole, given the existing skill shortages and challenged educational systems, as well as the trends toward declining expenditures on on-the-job training and worker transition support. Many economies are already experiencing income inequality and wage polarization.
CONTINUES IN PART III

No comments: