Sunday, September 2, 2018

PROJECT MANAGEMENT..... Capital project value improvement in the 21st century: Trillions of dollars in the offing PART II


Capital project value improvement in the 21st century: Trillions of dollars in the offing PART II
Continuous optimization
Many people perform project-value analyses only at the investment-decision stage of a project. Seasoned PVI practitioners, though, know that the PVI process must be engaged in continuously, throughout the project lifecycle. In fact, significant benefits can be accomplished early in the project lifecycle, when key trade-offs are often evaluated and technical design can be changed relatively easily without adversely impacting schedule.
A continuous, rigorous PVI implementation even at later stages of the project lifecycle can unlock project savings well after traditional approaches would have ceased to look—even benefiting future projects.
For example, projects in remote, labor-constrained areas often face fabrication and logistics challenges that were not well understood or anticipated during design. One operator gained a 15 percent improvement on fabrication costs by implementing modularization and logistical optimization improvements into the design just prior to fabrication. By modularizing pipe racks, process modules and stair towers, and taking advantage of lowest cost package sizing and routing to minimize transport costs, the team was able to reduce costs while mitigating the risks of working in a remote location.
In the above example, the fabrication and transport ideas generated by the project team were communicated to the design team for incorporation into future designs and specifications.
But wholesale implementation can prove difficult. Project owners must take an active role in this effort, as they are best positioned to maintain continuity between solutions and the core issues at hand. Leadership can begin with small projects to acclimate staff to PVI principles and practices. Once a project team experiences actual value on smaller projects, increase project size until all projects in that business unit fall under PVI requirements. After leadership establishes PVI for a portfolio of projects in one business unit, they can then apply it to all business units within the company.
Management systems
Agile cross-disciplinary ways of working
PVI practices are most effective when the innovative agile approach underpins its cross-disciplinary collaboration. “Agile” has made its way through the industry and is a familiar buzzword—however, while many people know the term, it is not well understood. The agile approach posits that requirements and solutions evolve through the collaborative effort of dynamic, self-organizing, cross-functional teams and their customers. It stresses adaptive, iterative, and evolutionary development along with continuous improvement that encourages rapid and flexible response to change. This provides a perfect platform for PVI to break existing silos and harness the best thinking across the board.
For example, one North American unconventional oil operator faced an unexpected drop in commodity prices that challenged the economic viability of several projects. Applying an agile approach, the operator hosted cross-functional ideation workshops and solicited input throughout the value chain. This was significant in the organization because, for the first time, key suppliers and stakeholders from outside the organization were included in the design process. The effort reduced installed costs for equipment by 40 percent and for facilities by 60 percent. The operator achieved these reductions largely by eliminating overly robust requirements that had been specified by designers working in silos without a clear understanding of the broader requirements.
Learning repository
As an organization adopts a PVI culture, it should immediately begin to document and catalogue proven ideas, as well as those that failed. This process formalizes institutional knowledge so that it will endure beyond current circumstances and staff. A major infrastructure firm embraced this concept and leveraged their database of ideas to obtain a 12 percent cost savings on a 500-kilometer road project through simple enhancements in pavement design. The creation of this database was a concerted effort to leverage internal and external experts in the industry to generate ideas, evaluating impact potential and focusing on the highest rated ideas to implement rigorously.
Codifying the knowledge-gathering process and assigning ownership to an individual can also provide functional and effective returns across business lines. We routinely utilize PVI examples collected from hundreds of projects in dozens of industries to improve and streamline processes from the study/funding stage to final delivery.
Robust financial modeling
Last but not least, all ideas uncovered in the PVI process must go through robust financial modeling. Capital project leaders too often make trade-off decisions based on simplistic calculations that lack rigor and result in crude assumptions. Worldclass capital organizations consistently test various optimization options including Monte Carlo modeling, a technique used across sectors to measure and forecast risk or uncertainty. By modeling a range of potential project outcomes, such as changes in delivery timelines or commodity prices, Monte Carlo modeling can provide a superior understanding of real world outcome distributions and enable more educated decisions.
Technical systems
Design standardization
Design standardization provides one of the greatest savings opportunities in capital projects. McKinsey research finds that a five-to-tenfold increase in construction productivity would be possible if construction were to move to a manufacturing-like system of mass production, with a greater degree of standardization and modularization. Such approaches are becoming more common, but are not yet the norm.2
Capital project designs are often bespoke, which may seemingly preclude the potential productivity gains of repeated manufacture and construction. But projects, particularly major projects, consist of many separate elements and packages—each of which can provide great opportunity for design standardization. Applying PVI, particularly in the planning and delivery phases, can prove most useful in identifying these opportunities.
In addition to savings, project owners who incorporate standard designs often benefit from reduced contractor pricing, as contractors can establish facilities tailored to providing standard products. One upstream petroleum major realized a seven-month improvement in time-to-market by abandoning its legacy of tendering projects that required unique execution approaches (bidding, fabrication, and construction) for each project in favor of a standardized and modularized design. This move to standardization was made possible through detailed interviews and problem solving with contractors, partners, suppliers and owners to identify optimal solutions.
Ultimately, every facet of a project should be examined through the PVI lens to see if it must be bespoke or if it can be standardized.
The Minimal Technical Solution
The Minimal Technical Solution (MTS) methodology serves as a framework to illustrate a project’s baseline needs, a starting point for design optimization. Once those needs are defined, the MTS helps users determine necessary add-ons to optimize design, eliminate any content that does not increase a project’s cash flow, and improve understanding of the relevant tradeoffs. Analyzed from the macro-level (production system) to the micro-level (single piece of equipment), this framework examines the project’s design requirements at the functional design stage before detailed engineering and procurement has begun.
MTS is not simply a cost-cutting exercise that slashes budgets to infeasible levels. Rather, by identifying an intermediate solution that meets mandatory requirements, it sets a starting point for subsequent iteration toward an optimal solution. MTS ensures that capex will not exceed expectations, that design is not over-engineered, and that potential options offer the best NPV. For example, a major downstream petroleum company saw a capex reduction of five to seven percent and an NPV improvement of 30–40 percent through the implementation of MTS in their plant expansion program. The organization defined functional requirements throughout the process flow, identifying the difference between the baseline concept for each dimension and its MTS in order to isolate the largest opportunities.
Design to Value
Each technical solution proposed in the PVI process—from minimizing technical requirements to standardizing components—must be validated with the project business case on an ongoing basis, through a process known as Design to Value (DtV). Each iteration of the design is modeled on an NPV basis to assure that all decisions maximize the project’s financial return. In this way, design decisions are tested, improved, and finally validated with respect to the financial value generated for the project. This continuous interaction between technical and financial considerations throughout the process assures that the project business case is clearly understood throughout the organization.
Capitalizing on the opportunity
A monumental opportunity exists for project owners who embrace PVI. This is particularly important when weighed against the vagaries of unpredictable commodity prices, a fluctuating labor pool, and a shortage of design-and-construction professionals. Going forward, project owners must ensure project success by adopting PVI, rather than chasing more projects. But they shouldn’t stop there.
For various reasons, industry leaders failed to sustain or institutionalize PVI best practices in the past. That should not happen again. Meaningful steps must be taken to integrate and systematize PVI into the culture of the industry. In addition, leaders must also take great care to ensure that these practices remain flexible and adaptive, and are periodically tested and reexamined to avoid calcification and rigidity. Done right, PVI implementation can mean trillions of dollars captured that would have been lost to inefficiency and profligate practices.
By Jeff Billows, Kevin Kroll, Piotr Pikul, and Charlene Pretorius
https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/capital-project-value-improvement-in-the-21st-century-trillions-of-dollars-in-the-offing?cid=other-eml-alt-mip-mck-oth-1808&hlkid=04343a7d0aa44d92ae4934d9954eb7eb&hctky=1627601&hdpid=4efbfdc4-f88f-4238-8f9a-5a8a560b5192

No comments: