Saturday, September 15, 2018

AI SPECIAL.... Notes from the frontier: Modeling the impact of AI on the world economy PART I



AI SPECIAL Notes from the frontier: Modeling the impact of AI on the world economy PART I
Artificial intelligence has large potential to contribute to global economic activity. But widening gaps among countries, companies, and workers will need to be managed to maximize the benefits.
The role of artificial intelligence (AI) tools and techniques in business and the global economy is a hot topic. This is not surprising given that AI might usher in radical—arguably unprecedented—changes in the way people live and work. The AI revolution is not in its infancy, but most of its economic impact is yet to come.
New research from the McKinsey Global Institute attempts to simulate the impact of AI on the world economy. First, it builds on an understanding of the behavior of companies and the dynamics of various sectors to develop a bottom-up view of how to adopt and absorb AI technologies. Second, it takes into account the likely disruptions that countries, companies, and workers are likely to experience as they transition to AI. There will very probably be costs during this transition period, and they need to be factored into any estimate. The analysis examines how economic gains and losses are likely to be distributed among firms, employees, and countries and how this distribution could potentially hamper the capture of AI benefits. Third, the research examines the dynamics of AI for a wide range of countries—clustered into groups with similar characteristics—with the aim of giving a more global view.
The analysis should be seen as a guide to the potential economic impact of AI based on the best knowledge available at this stage. Among the major findings are the following:
1. There is large potential for AI to contribute to global economic activity
2. A key challenge is that adoption of AI could widen gaps among countries, companies, and workers

1.         There is large potential for AI to contribute to global economic activity
The McKinsey Global Institute looked at five broad categories of AI: computer vision, natural language, virtual assistants, robotic process automation, and advanced machine learning. Companies will likely use these tools to varying degrees. Some will take an opportunistic approach, testing only one technology and piloting it in a specific function (an approach our modeling calls adoption). Others might be bolder, adopting all five and then absorbing them across the entire organization (an approach we call full absorption). In between these two poles, there will be many companies at different stages of adoption; the model also captures this partial impact.
By 2030, the average simulation shows that some 70 percent of companies might have adopted at least one type of AI technology but that less than half will have fully absorbed the five categories. The pattern of adoption and full absorption might be relatively rapid—at the high end of what has been observed with other technologies.
Jacques Bughin explains that while the technical and economic potential of automation is vast, organizations face several challenges to overcome before these technologies will be commonplace.
Several barriers might hinder rapid adoption and absorption (see video, “A minute with the McKinsey Global Institute: Challenges of adopting automation technology”). For instance, late adopters might find it difficult to generate impact from AI, because front-runners have already captured AI opportunities and late adopters lag in developing capabilities and attracting talent.
Nevertheless, at the global average level of adoption and absorption implied by our simulation, AI has the potential to deliver additional global economic activity of around $13 trillion by 2030, or about 16 percent higher cumulative GDP compared with today. This amounts to 1.2 percent additional GDP growth per year. If delivered, this impact would compare well with that of other general-purpose technologies through history.
A number of factors, including labor automation, innovation, and new competition, affect AI-driven productivity growth. Micro factors, such as the pace of adoption of AI, and macro factors, such as the global connectedness or labor-market structure of a country, both contribute to the size of the impact.
Our simulation examined seven possible channels of impact. The first three relate to the impact of AI adoption on the need for, and mix of, production factors that have direct impact on company productivity. The other four are externalities linked to the adoption of AI related to the broad economic environment and the transition to AI. We acknowledge that these seven channels are not definitive or necessarily comprehensive but rather a starting point based on our current understanding and trends currently under way.
The impact of AI might not be linear but could build up at an accelerating pace over time. Its contribution to growth might be three or more times higher by 2030 than it is over the next five years. An S-curve pattern of adoption and absorption of AI is likely—a slow start due to the substantial costs and investment associated with learning and deploying these technologies, then an acceleration driven by the cumulative effect of competition and an improvement in complementary capabilities alongside process innovations.
It would be a misjudgment to interpret this “slow burn” pattern of impact as proof that the effect of AI will be limited. The size of benefits for those who move early into these technologies will build up in later years at the expense of firms with limited or no adoption.
CONTINUES IN PART II

No comments: