Sunday, July 8, 2018

ECO SPECIAL ....The factories also foster improvements in safety, environmental sustainability, and rightsizing footprints.


The factories also foster improvements in safety, environmental sustainability, and rightsizing footprints.

Digitization Meets Customization
Although it’s exceptional, the Fujitsu site just hints at the possibilities for digital factories. Indeed, the overall slow adoption of digital factory concepts can be seen in a recent PwC survey of 200 German manufacturers (German companies were examined as a proxy for advanced manufacturers globally because they have a well-earned reputation for production innovation). Although more than 90 percent of survey respondents said they had earmarked money for digital factories, these investments were overwhelmingly for stand-alone or only partially integrated technologies. A mere 6 percent of companies categorized their factories as being “fully digitized.”
However, perhaps the most intriguing takeaway from the PwC survey was that despite their timidity about digitization, manufacturers are beginning to recognize its strategic potential, which previously tended to be overlooked. That’s not to say that bread-and-butter tactical considerations are ever far from manufacturers’ minds; 98 percent of respondents still view digitization somewhat blandly as a path for increasing production efficiency. But at the same time, a whopping 74 percent of companies named regionalization (being able to set up or expand factories in markets where their products are sold and where opportunities exist to widen revenue streams through customized products and improved service levels) as a primary reason for digital investments.
Moreover, in a sharp departure from the recent past, the possibility of being able to immediately tailor products to match customer preferences and to offer customers the option to “build” their own products appears to be driving production decisions more strongly than slashing labor costs. Indeed, only about 20 percent of respondents now plan to relocate manufacturing facilities to low-wage countries in Asia, Eastern Europe, and South America; nearly 80 percent are looking at Western Europe (where their largest customer bases are) for new digital factory capacity. Evidence of this trend can be found in Adidas’s new “speed factories” — one established last year in Ansbach, Germany, and another this year in Atlanta. In these facilities, automated production lines, managed by human programmers and fed by networks that oversee the sportswear company’s supply chain, are able to make a pair of expensive, customized cross-trainers from start to finish in about five hours. In Adidas’s low-cost, less digital Asian factories, this process can take several weeks. According to the company, the speed factories will more than pay for themselves in the next few years when they are scaled up. In particular, the speed factories are expected to slash the long lead time for debuting new shoe designs and allow Adidas to react quickly to about-faces in customer preferences.
Modernizing the Technology Spine
Some of the technology spine in digital factories involves relatively old-fashioned software (primarily legacy ERP/MES systems or even MS Excel) that was originally acquired to perform basic planning and address operational inefficiencies. By joining these isolated data and analytical networks, via sensors and the cloud, to a common infrastructure, it is possible for components, machines, production managers, transportation vehicles, and assembly-line workers to continually communicate with one another and the extended ecosystem in real time — greatly shortening the distance and time from raw material to finished product and facilitating proactive equipment maintenance.
Much of the impact of digital manufacturing will come from significant advances that are still evolving and that postdate the traditional ERP era — for example, robots that can learn through repetition rather than programming. This equipment can give workers the opportunity to train machines quickly to tackle multiple tasks, flexibly shifting robots from job to job as specific factory activities take precedence.
Another example is drones, which can be used for rapid transport of a missing part to an assembly station and for visual surveillance of plant and equipment performance. In a somewhat more open-ended application, Austrian automotive supplier Magna Steyr employs drones in its plant in Graz, Germany, to independently fly through the assembly line, scanning materials labels to compare against available stock in the warehouse and provide information to the network for managing factory inventory. Magna Steyr has also embraced an intriguing component of the digital factory whose potential value is just beginning to emerge: namely, the digital twin, or a virtual doppelganger of the plant, including form, functions, and chemical and physical processes. With this approach, new factories can be designed and engineered in three dimensions, and potential glitches and inefficiencies may be remedied before the plant is put into service. After the plant is on-line, real-world performance and activity data is fed back into the digital twin, which can be monitored and adjusted to continuously optimize processes and maintain equipment at peak efficiency.
Understanding the Obstacles
One of the more intractable obstacles to a successful digital factory is the makeup of the workforce itself. This type of advanced production approach represents an entirely new model of human–machine interaction, one that not many workers — or manufacturers — are prepared for. In our view, understanding the impact on the people in the company is at least as important as calculating the financial benefit of the digital factory, in part because the former will ultimately impinge on the latter. Employees who feel marginalized by the emphasis on new technologies or who are not equipped to work in that environment will compromise the factory’s chances for success.
Top of Form
Bottom of Form
Purely from this perspective, companies are clearly aware that they are not ready for digital factories. According to our survey, around half of manufacturers believe that their employees are not open to digital change, and an equal proportion feel that their company lacks a truly digital culture. Part of the solution is to retrain the company’s ablest workers to be more data oriented and conversant in programming factory automation equipment; another is to support government-based apprenticeship programs and recruit employees who better match the requirements of a digital factory. In other words, manufacturers cannot afford to be passive but instead must lead the charge toward reorienting the skill sets of their current and future employees.
But that alone is not enough. Top management must actively support the move toward digitization and, very publicly within the organization, build trust and acceptance for the new strategy by offering employees a convincing narrative of how they will benefit from the technologies.
Executives could stress that workers will be relieved of tasks that are highly repetitive, physically difficult, and unsafe while improving their accuracy and productivity. They may enjoy the benefits of a cleaner environment inside and outside the more ecologically sound factory. And their employment and salary prospects may actually improve. Approximately half of the companies responding to the PwC survey expect wages in digital factories to increase, and they believe that older employees will be able to stay at their jobs longer; 86 percent expect that overall, the number of hours employees work will stay the same. This suggests that companies will be sharing some of their new gains in efficiency and revenue with their workforce.
www.strategy-business.com

No comments: