Monday, November 5, 2018

WORKPLACE SPECIAL..... Where machines could replace humans—and where they can’t (yet) PART II


Where machines could replace humans—and where they can’t (yet)
PART II

Activities and sectors in the middle range for automation
Across all occupations in the US economy, one-third of the time spent in the workplace involves collecting and processing data. Both activities have a technical potential for automation exceeding 60 percent. Long ago, many companies automated activities such as administering procurement, processing payrolls, calculating material-resource needs, generating invoices, and using bar codes to track flows of materials. But as technology progresses, computers are helping to increase the scale and quality of these activities. For example, a number of companies now offer solutions that automate entering paper and PDF invoices into computer systems or even processing loan applications. And it’s not just entry-level workers or low-wage clerks who collect and process data; people whose annual incomes exceed $200,000 spend some 31 percent of their time doing those things, as well.
Financial services and insurance provide one example of this phenomenon. The world of finance relies on professional expertise: stock traders and investment bankers live off their wits. Yet about 50 percent of the overall time of the workforce in finance and insurance is devoted to collecting and processing data, where the technical potential for automation is high. Insurance sales agents gather customer or product information and underwriters verify the accuracy of records. Securities and financial sales agents prepare sales or other contracts. Bank tellers verify the accuracy of financial data.
As a result, the financial sector has the technical potential to automate activities taking up 43 percent of its workers’ time. Once again, the potential is far higher for some occupations than for others. For example, we estimate that mortgage brokers spend as much as 90 percent of their time processing applications. Putting in place more sophisticated verification processes for documents and credit applications could reduce that proportion to just more than 60 percent. This would free up mortgage advisers to focus more of their time on advising clients rather than routine processing. Both the customer and the mortgage institution get greater value.
Other activities in the middle range of the technical potential for automation involve large amounts of physical activity or the operation of machinery in unpredictable environments. These types of activities make up a high proportion of the work in sectors such as farming, forestry, and construction and can be found in many other sectors as well.
Examples include operating a crane on a construction site, providing medical care as a first responder, collecting trash in public areas, setting up classroom materials and equipment, and making beds in hotel rooms. The latter two activities are unpredictable largely because the environment keeps changing. Schoolchildren leave bags, books, and coats in a seemingly random manner. Likewise, in a hotel room, different guests throw pillows in different places, may or may not leave clothing on their beds, and clutter up the floor space in different ways.
These activities, requiring greater flexibility than those in a predictable environment, are for now more difficult to automate with currently demonstrated technologies: their automation potential is 25 percent. Should technology advance to handle unpredictable environments with the same ease as predictable ones, the potential for automation would jump to 67 percent. Already, some activities in less predictable settings in farming and construction (such as evaluating the quality of crops, measuring materials, or translating blueprints into work requirements) are more susceptible to automation.
Activities with low technical potential for automation
The hardest activities to automate with currently available technologies are those that involve managing and developing people (9 percent automation potential) or that apply expertise to decision making, planning, or creative work (18 percent). These activities, often characterized as knowledge work, can be as varied as coding software, creating menus, or writing promotional materials. For now, computers do an excellent job with very well-defined activities, such as optimizing trucking routes, but humans still need to determine the proper goals, interpret results, or provide commonsense checks for solutions. The importance of human interaction is evident in two sectors that, so far, have a relatively low technical potential for automation: healthcare and education.

Overall, healthcare has a technical potential for automation of about 36 percent, but the potential is lower for health professionals whose daily activities require expertise and direct contact with patients. For example, we estimate that less than 30 percent of a registered nurse’s activities could be automated, based on technical considerations alone. For dental hygienists, that proportion drops to 13 percent.
Nonetheless, some healthcare activities, including preparing food in hospitals and administering non-intravenous medications, could be automated if currently demonstrated technologies were adapted. Data collection, which also accounts for a significant amount of working time in the sector, could become more automated as well. Nursing assistants, for example, spend about two-thirds of their time collecting health information. Even some of the more complex activities that doctors perform, such as administering anesthesia during simple procedures or reading radiological scans, have the technical potential for automation.
Of all the sectors we have examined, the technical feasibility of automation is lowest in education, at least for now. To be sure, digital technology is transforming the field, as can be seen from the myriad classes and learning vehicles available online. Yet the essence of teaching is deep expertise and complex interactions with other people. Together, those two categories—the least automatable of the seven identified in the first exhibit—account for about one-half of the activities in the education sector.
Even so, 27 percent of the activities in education—primarily those that happen outside the classroom or on the sidelines—have the potential to be automated with demonstrated technologies. Janitors and cleaners, for example, clean and monitor building premises. Cooks prepare and serve school food. Administrative assistants maintain inventory records and personnel information. The automation of these data-collection and processing activities may help to reduce the growth of the administrative expenses of education and to lower its cost without affecting its quality.
Looking ahead
As technology develops, robotics and machine learning will make greater inroads into activities that today have only a low technical potential for automation. New techniques, for example, are enabling safer and more enhanced physical collaboration between robots and humans in what are now considered unpredictable environments. These developments could enable the automation of more activities in sectors such as construction. Artificial intelligence can be used to design components in engineer-heavy sectors.
One of the biggest technological breakthroughs would come if machines were to develop an understanding of natural language on par with median human performance—that is, if computers gained the ability to recognize the concepts in everyday communication between people. In retailing, such natural-language advances would increase the technical potential for automation from 53 percent of all labor time to 60 percent. In finance and insurance, the leap would be even greater, to 66 percent, from 43 percent. In healthcare, too, while we don’t believe currently demonstrated technologies could accomplish all of the activities needed to diagnose and treat patients, technology will become more capable over time. Robots may not be cleaning your teeth or teaching your children quite yet, but that doesn’t mean they won’t in the future.
As stated at the outset, though, simply considering the technical potential for automation is not enough to assess how much of it will occur in particular activities. The actual level will reflect the interplay of the technical potential, the benefits and costs (or the business case), the supply-and-demand dynamics of labor, and various regulatory and social factors related to acceptability.
Leading more automated enterprises
Automation could transform the workplace for everyone, including senior management. The rapid evolution of technology can make harnessing its potential and avoiding its pitfalls especially complex. In some industries, such as retailing, automation is already changing the nature of competition. E-commerce players, for example, compete with traditional retailers by using both physical automation (such as robots in warehouses) and the automation of knowledge work (including algorithms that alert shoppers to items they may want to buy). In mining, autonomous haulage systems that transport ore inside mines more safely and efficiently than human operators do could also deliver a step change in productivity.
Top executives will first and foremost need to identify where automation could transform their own organizations and then put a plan in place to migrate to new business processes enabled by automation. A heat map of potential automation activities within companies can help to guide, identify, and prioritize the potential processes and activities that could be transformed. As we have noted, the key question will be where and how to unlock value, given the cost of replacing human labor with machines. The majority of the benefits may come not from reducing labor costs but from raising productivity through fewer errors, higher output, and improved quality, safety, and speed.
It is never too early to prepare for the future. To get ready for automation’s advances tomorrow, executives must challenge themselves to understand the data and automation technologies on the horizon today. But more than data and technological savvy are required to capture value from automation. The greater challenges are the workforce and organizational changes that leaders will have to put in place as automation upends entire business processes, as well as the culture of organizations, which must learn to view automation as a reliable productivity lever. Senior leaders, for their part, will need to “let go” in ways that run counter to a century of organizational development.5

Understanding the activities that are most susceptible to automation from a technical perspective could provide a unique opportunity to rethink how workers engage with their jobs and how digital labor platforms can better connect individuals, teams, and projects.6 It could also inspire top managers to think about how many of their own activities could be better and more efficiently executed by machines, freeing up executive time to focus on the core competencies that no robot or algorithm can replace—as yet.
By Michael ChuiJames Manyika, and Mehdi Miremadi
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/where-machines-could-replace-humans-and-where-they-cant-yet

No comments: