Friday, August 17, 2018

DIGITAL / SUSTAINABILITY SPECIAL .... Digital Technology and Sustainability: Positive Mutual Reinforcement PART I


 Digital Technology and Sustainability: Positive Mutual Reinforcement PART I
Get the balance right between these two concepts, and your business can thrive. 

Most business leaders would like to run an environmentally sustainable company, one that does little harm to the natural world and that leaves its employees and customers healthier. Few companies have been able to put that ideal into practice because they haven’t had the data. But now they do.
Enevo, a Finnish company that makes devices for “smart” waste disposal, could not exist if it weren’t for the Internet of Things. Its devices feature embedded sensors and analytic software. They enable waste companies to plan pickups when waste bins are full, rather than at set time periods, making collection of waste more efficient and reducing costs.

In traditional industrial terms, digital technology and environmental sustainability seem mutually exclusive. The factors that propel them are unrelated. One is driven by sweeping technological change brought about by the Internet of Things, artificial intelligence (AI), and robotics, all promising to transform global manufacturing, industrial processes, and labor. Put simply, it’s about efficiencies.
The other is driven by a combination of climate and environmental degradation and geopolitical instability, all of which demand a new approach that prioritizes resource conservation and environmental governance — and in particular redoubled efforts to de-carbonize the atmosphere. Businesses increasingly recognize that it will be impossible to meet the world’s growing demand for products and services purely through a linear increase in production and consumption. People won’t be able to address the ecological and social challenges of the day without fundamental business model innovation. Moreover, unsustainable practices such as the release of toxic emissions can no longer be hidden.
But the two concepts, digital technology and environmental sustainability, are often mutually reinforcing. And we would go further: Without digital technology, it is hard for companies to ease their pollution footprint or manage waste. Without a full understanding of sustainability, the energy drawn by computers can be wasted.
Bringing digital prowess and sustainable practices together should be at the forefront of strategic thinking for any business — as a way to differentiate itself and gain long-term viability among customers, regulators, and the communities where businesses operate. In fact, it may even be essential.
Combining Digital Expertise and Sustainability
In practical terms, the two concepts, properly combined, can bring myriad benefits. In a report (pdf) published in January 2018, PwC identified 80 ways in which AI technologies could be used to benefit the environment, including optimized energy system forecasting; demand-response charging infrastructure in transportation; analytics and automation for smart urban planning; “hyperlocal” weather forecasting for crop management; and supply chain monitoring and transparency.
https://www.strategy-business.com/media/image/40991773_ex1s.gif

Indeed, the low-hanging fruit here may focus on transparent supply chains and the sustainable sourcing of raw materials. Consumer products companies and retailers can seek better ways of validating supply chain claims, using digital tools and sustainability. This could be called business value.
Many companies see an opportunity to drive their sustainability goals through digitization in the supply chain. “We are seeing more companies applying high-tech, data-centric applications to their source patterns,” says Michael Rohwer, associate director, information and communications technology at Business for Social Responsibility, a global nonprofit organization that works with 250 companies to help them move toward greater sustainability.
Knowing Your Assets
In the past, it was not uncommon for companies to know little about their assets or products after they were made and sold. So a great deal of waste has unwittingly been built into the manufacturing and consumption cycle. But by using digital technology such as electronic tagging, companies can start to harvest data about demand, usage, and the life cycle of products for “circular economy” benefits. A circular economy is one in which products are manufactured and services provided with a focus on the reuse of materials and a reliance on renewable resources, for the benefit of the environment.
For example, consumer electronics manufacturer Philips is using digital technology to capture more information on the product life cycle in order to reduce waste. The company’s analysis of the secondary market for components revealed that its customers had opportunities to reuse certain parts and thus extend the life of some existing equipment, such as X-ray machines. This meant that not only could the customer lengthen the life of the equipment it had bought, but Philips could develop an ongoing relationship with its customers that it hadn’t had before.
What’s often known as Industry 4.0 encompasses a range of digital improvements that can be applied to manufacturing companies. Better data capture of assets should enable manufacturers and users of products to better understand the life cycle of their products. Such an understanding has many business benefits, but could also be used to increase efficiency in use and to encourage the reuse or remanufacturing of assets at the end of their normal working life.
Electric vehicle charging will become more affordable via demand-response software programs enabled by big data (such as those published by AutoGrid Systems). Clean, smart, connected, and increasingly autonomous and shared short-haul transport will combine AI with other Industry 4.0 technologies, notably the Internet of Things, drones, and advanced materials (in battery breakthroughs, for instance).
In another example, mining companies are already reasonably advanced in their thinking concerning how to use digitization to source and track the raw materials that are used in consumer products — such as tracing and verifying the sources of metals used in mobile phones. And in power and transport, Norwegian hydropower group Agder Energi is using AI and the cloud to predict and prepare for changing energy needs in Norway, particularly given the rapidly increasing penetration of electric vehicles.
Better for Consumers
A number of programs are using digital technology to deliver social benefits. The M-Pesa mobile phone banking and money transfer application, developed in Kenya, has empowered people across Africa to make financial transactions without a bank. Plastic Bank, based in Haiti, is an organization using blockchain technology to support payment to plastic waste collectors, creating a livelihood for some of the world’s poorest people — on top of providing an incentive to collect the plastics that pollute the marine environment.
Such action also addresses matters of customer value, tackling rising concern about corporate sustainability among millennials, who are among the biggest customers of technology-enabled devices. New business models will need to prioritize producing better outcomes for consumers.
Getting the Balance Right
Yet as compelling as this interplay between digital technology and sustainability may seem, it is no panacea. Although digital technology and sustainability are mutually reinforcing, they do not always sit easily together. They are championed by different functions, for one thing.
For all the enormous potential digital technology offers for building a sustainable planet for future generations, it also poses short- and long-term risks. These can be divided, broadly speaking, into six categories with varying impacts on individuals, organizations, society, and the Earth.
https://www.strategy-business.com/media/image/40991773_ex2.gif
CONTINUES IN PART II

No comments: