Sunday, August 19, 2018

AI SPECIAL...... Outlook 2017-21 PART I


AI Outlook 2017-21 PART I

As the conceptual side of computer science becomes practical and relevant to business, companies must decide what type of AI role they should play.
Jeff Heepke knows where to plant corn on his 4,500-acre farm in Illinois because of artificial intelligence (AI). He uses a smartphone app called Climate Basic, which divides Heepke’s farmland (and, in fact, the entire continental U.S.) into plots that are 10 meters square. The app draws on local temperature and erosion records, expected precipitation, soil quality, and other agricultural data to determine how to maximize yields for each plot. If a rainy cold front is expected to pass by, Heepke knows which areas to avoid watering or irrigating that afternoon. As the U.S. Department of Agriculture noted, this use of artificial intelligence across the industry has produced the largest crops in the country’s history.
Climate Corporation, the Silicon Valley–based developer of Climate Basic, also offers a more advanced AI app that operates autonomously. If a storm hits a region, or a drought occurs, it adjusts local yield numbers downward. Farmers who have bought insurance to supplement their government coverage get a check; no questions asked, no paper filing necessary. The insurance companies and farmers both benefit from having a much less labor-intensive, more streamlined, and less expensive automated claims process.
Monsanto paid nearly US$1 billion to buy Climate Corporation in 2013, giving the company’s models added legitimacy. Since then, Monsanto has continued to upgrade the AI models, integrating data from farm equipment and sensors planted in the fields so that they improve their accuracy and insight as more data is fed into them. One result is a better understanding of climate change and its effects — for example, the northward migration of arable land for corn, or the increasing frequency of severe storms.
Applications like this are typical of the new wave of artificial intelligence in business. AI is generating new approaches to business models, operations, and the deployment of people that are likely to fundamentally change the way business operates. And if it can transform an earthbound industry like agriculture, how long will it be before your company is affected?
An Unavoidable Opportunity
Many business leaders are keenly aware of the potential value of artificial intelligence, but are not yet poised to take advantage of it. In PwC’s 2017 Digital IQ survey of senior executives worldwide, 54 percent of the respondents said they were making substantial investments in AI today. But only 20 percent said their organizations had the skills necessary to succeed with this technology.
Reports on artificial intelligence tend to portray it as either a servant, making all technology more responsive, or an overlord, eliminating jobs and destroying privacy. But for business decision makers, AI is primarily an enabler of productivity. It will eliminate jobs, to be sure, but it will also fundamentally change work processes and might create jobs in the long run. The nature of decision making, collaboration, creative art, and scientific research will all be affected; so will enterprise structures. Technological systems, including potentially your products and services, as well as your office and factory equipment, will respond to people (and one another) in ways that feel as if they are coming to life.
In their book Artificial Intelligence: A Modern Approach (Pearson, 1995), Stuart Russell and Peter Norvig define AI as “the designing and building of intelligent agents that receive percepts from the environment and take actions that affect that environment.” The most critical difference between AI and general-purpose software is in the phrase “take actions.” AI enables machines to respond on their own to signals from the world at large, signals that programmers do not directly control and therefore can’t anticipate.
The fastest-growing category of AI is machine learning, or the ability of software to improve its own activity by analyzing interactions with the world at large (see “The Road to Deep Learning,” below). This technology, which has been a continual force in the history of computing since the 1940s, has grown dramatically in sophistication during the last few years.
The Road to Deep Learning
This may be the first moment in AI’s history when a majority of experts agree the technology has practical value. From its conceptual beginnings in the 1950s, led by legendary computer scientists such as Marvin Minsky and John McCarthy, its future viability has been the subject of fierce debate. As recently as 2000, the most proficient AI system was roughly comparable, in complexity, to the brain of a worm. Then, as high-bandwidth networking, cloud computing, and high-powered graphics-enabled microprocessors emerged, researchers began building multilayered neural networks — still extremely slow and limited in comparison with natural brains, but useful in practical ways.
The best-known AI triumphs — in which software systems beat expert human players in Jeopardy, chess, Go, poker, and soccer — differ from most day-to-day business applications. These games have prescribed rules and well-defined outcomes; every game ends in a win, loss, or tie. The games are also closed-loop systems: They affect only the players, not outsiders. The software can be trained through multiple failures with no serious risks. You can’t say the same of an autonomous vehicle crash, a factory failure, or a mistranslation.
There are currently two main schools of thought on how to develop the inference capabilities necessary for AI programs to navigate through the complexities of everyday life. In both, programs learn from experience — that is, the responses and reactions they get influence the way the programs act thereafter. The first approach uses conditional instructions (also known as heuristics) to accomplish this. For instance, an AI bot would interpret the emotions in a conversation by following a program that instructed it to start by checking for emotions that were evident in the recent past.
The second approach is known as machine learning. The machine is taught, using specific examples, to make inferences about the world around it. It then builds its understanding through this inference-making ability, without following specific instructions to do so. The Google search engine’s “next-word completion” feature is a good example of machine learning. Type in the word artificial, and several suggestions for the next word will appear, perhaps intelligenceselection, and insemination. No one has programmed it to seek those complements. Google chose the strategy of looking for the three words most frequently typed after artificial. With huge amounts of data available, machine learning can provide uncanny accuracy about patterns of behavior.
The type of machine learning called deep learning has become increasingly important. A deep learning system is a multilayered neural network that learns representations of the world and stores them as a nested hierarchy of concepts many layers deep. For example, when processing thousands of images, it recognizes objects based on a hierarchy of simpler building blocks: straight lines and curved lines at the basic level, then eyes, mouths, and noses, and then faces, and then specific facial features. Besides image recognition, deep learning appears to be a promising way to approach complex challenges such as speech comprehension, human–machine conversation, language translation, and vehicle navigation 
Though it is the closest machine to a human brain, a deep learning neural network is not suitable for all problems. It requires multiple processors with enormous computing power, far beyond conventional IT architecture; it will learn only by processing enormous amounts of data; and its decision processes are not transparent.
News aggregation software, for example, had long relied on rudimentary AI to curate articles based on people’s requests. Then it evolved to analyze behavior, tracking the way people clicked on articles and the time they spent reading, and adjusting the selections accordingly. Next it aggregated individual users’ behavior with the larger population, particularly those who had similar media habits. Now it is incorporating broader data about the way readers’ interests change over time, to anticipate what people are likely to want to see next, even if they have never clicked on that topic before. Tomorrow’s AI aggregators will be able to detect and counter “fake news” by scanning for inconsistencies and routing people to alternative perspectives.
AI applications in daily use include all smartphone digital assistants, email programs that sort entries by importance, voice recognition systems, image recognition apps such as Facebook Picture Search, digital assistants such as Amazon Echo and Google Home, and much of the emerging Industrial Internet. Some AI apps are targeted at minor frustrations — DoNotPay, an online legal bot, has reversed thousands of parking tickets — and others, such as connected car and language translation technologies, represent fundamental shifts in the way people live. A growing number are aimed at improving human behavior; for instance, GM’s 2016 Chevrolet Malibu feeds data from sensors into a backseat driver–like guidance system for teenagers at the wheel.
Despite all this activity, the market for AI is still small. Market research firm Tractica estimated 2016 revenues at just $644 million. But it expects hockey stick–style growth, reaching $15 billion by 2022 and accelerating thereafter. In late 2016, there were about 1,500 AI-related startups in the U.S. alone, and total funding in 2016 reached a record $5 billion. Google, Facebook, Microsoft, Salesforce.com, and other tech companies are snapping up AI software companies, and large, established companies are recruiting deep learning talent and, like Monsanto, buying AI companies specializing in their markets. 

To make the most of this technology in your enterprise, consider the three main ways that businesses can or will use AI:

• Assisted intelligence, now widely available, improves what people and organizations are already doing.
• Augmented intelligence, emerging today, enables organizations and people to do things they couldn’t otherwise do.
• Autonomous intelligence, being developed for the future, creates and deploys machines that act on their own.
Many companies will make investments in all three during the next few years, drawing from a wide variety of applications. They complement one another, but require different types of investment, different staffing considerations, and different business models.

CONTINUES IN PART II

No comments: