Monday, August 27, 2018

DIGITAL /PHARMA SPECIAL ....Will digital platforms transform pharmaceuticals?


Will digital platforms transform pharmaceuticals?
By Olivier Leclerc and Jeff Smith
Start-up companies are combining genetic information and new therapies to transform drug discovery and development—at greater speed and scale.
Product innovation is at the heart of the pharmaceutical industry’s value chain. Long, capital-intensive development cycles and legacy processes, though, have made it difficult to exploit the full potential of emerging digital technologies to deliver faster, more agile approaches to discover and develop new drugs. Indeed, McKinsey research shows that the industry’s digital maturity lags that of most other industries.
A new current is forming in one area of the industry: start-up companies that are creating biomolecular platforms around cellular, genetic, and other advanced therapies.1The platforms marshal vast amounts of data on the genetics of diseases, such as cancer, and combine that with patients’ genetic profiles and related data. They zero in on key points along the information chain—for example, where there are linkages between DNA and proteins, and then cells—to “design” new drugs. Much like software developers, the platforms engineer disease therapies built upon the “code-like” DNA and RNA sequences within cells .
These techniques have significant implications for the treatment of many life-threatening illnesses that are outside the reach of standard therapeutic approaches. They could also disrupt the industry’s value chain as they speed up drug discovery and development, with the potential for a single platform to scale rapidly across a range of diseases  
In one example of a biomolecular platform, for a disease that results from a mutation in DNA that codes for a needed enzyme, the platform models the disease from medical and genetic data to arrive at an enzyme “optimized” to correct for the mutation. The platform then designs a sequence of genetic material to treat the disease, as well as a delivery vehicle to get it to the target cells. In another example, for CAR-T therapies, the platform modifies a patient’s T cells (an immune-system cell), which are then deployed to attack a cancer.
A new competitive landscape
Optimized biomolecular platforms have the potential to accelerate the early stages of R&D significantly. For example, it can take as little as weeks or months to go from concept to drug versus what’s often many months, if not years, of trial and error under conventional discovery methods. This is achieved by routinizing key steps (such as preparing a drug for preclinical testing) and using common underlying elements in the design of the drug (such as drug-delivery vehicles that are similar). In the past five years or so, a number of start-ups have formulated dozens of drugs that are in clinical trials and, in some cases, drugs that have already been approved. The large information base behind therapies helps identify the right targets for preclinical and clinical trials.
Digital technologies also enable the fast, replicable, and systematic application of a platform’s data and analytics capabilities to treat a whole range of related ailments. Initially, a platform organization may discover drugs limited to one or a small number of diseases. Then, if successful in early tests, it can expand the therapies rapidly to a broader range of diseases, building scale economies. Financial valuations of platform companies often swing dramatically on these early readouts and reflect the fact that early-stage platform companies implicitly carry an option to develop a broad pipeline. At the same time, the platforms encourage collaborative drug discovery—and even new pharmaceutical ecosystems—since research institutes and other partners can work together on a therapy concept that can be rapidly translated into a drug.
The road ahead
Biomolecular platforms face obstacles. They require significant up-front investment to build, and the variability and complexity of the diseases they target is staggering, even using high-powered information systems in the discovery process. Yet once platforms are locked in on a design and validated with a therapy (such as a vaccine or an intracellular treatment), their speed and ability to scale rapidly across a range of related diseases make them a potent force. The advances may catalyze new partnerships and M&A activity as larger companies seek to establish their own platform expertise and capabilities. Indeed, as the benefits of digital prove themselves, both biotech pioneers and larger pharma companies are increasingly positioning themselves to harness the potential of biomolecular platforms. That’s a recipe for progress and change in an already innovative industry.
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/shaking-up-the-value-chain?cid=other-eml-alt-mkq-mck-oth-1808&hlkid=59dae826dfaf4b4d980f635dcb7e2f0c&hctky=1627601&hdpid=de80038e-ea08-4016-afab-8b99cef9545c

No comments: